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Abstract— This paper investigates the differentially pri-
vate output consensus problem of continuous-time het-
erogeneous multi-agent systems. An algorithm blending
estimation, control and privacy is proposed. To prevent
privacy leakage, each agent constructs an auxiliary variable
regarding to its own initial output, and then adds a non-
decaying noise to this variable. To incorporate the network
bandwidth limitation, each agent quantifies the noisy aux-
iliary variable to 1-bit binary-valued data, and transmits
this data to its neighbours at some impulse time instants.
Based on the received information, each agent builds the
recursive projection algorithm to estimate its neighbours’
auxiliary variables, and updates its own auxiliary variable.
Then, each agent designs its controller by using its own
state and auxiliary variable to achieve the mean-square
output consensus. To characterize the degree of privacy
protection, the differential privacy index of the proposed
mechanism is derived. Compared with the existing works,
this paper only needs 1-bit communication bandwidth, and
the control signals are not required to constantly feed back
to the original system. From the aspect of quantization and
control, the communication resources can be conserved.
An example is presented to illustrate the effectiveness of
the theoretical results.

Index Terms— Differentially private consensus, hetero-
geneous multi-agent systems, binary-valued communica-
tions, recursive projection algorithm, impulsive control.

I. INTRODUCTION

Consensus of multi-agent systems (MASs) represents a state
where multiple autonomous agents, each with their own ob-
jectives, capabilities, and perspectives, come to an agreement
or alignment on a particular aspect of their collective behavior
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or decision. In many practical fields, consensus algorithms are
widely applied, including in the power industry [1], [2], multi-
spacecraft systems [3], and multi-vehicle coordination [4], etc.
In reality, to prevent external eavesdroppers from stealing real
communication information, it is imperative to factor in the
necessity of privacy protection while striving for consensus.

Differential privacy is one of the main methods of privacy
protection, and can precisely characterize the degree of protec-
tion by properly choosing some parameters [5], [6]. Another
common approach to privacy protection is cryptography, which
involves transforming data into an encrypted form and can
only be deciphered by the receivers possessing the correct key.
Cryptography-based methods can achieve perfect accuracy
but often require more computational resources. In contrast,
differential privacy offers the advantage of low computational
cost, but at the expense of reduced accuracy. In recent years,
differentially private consensus has received widespread atten-
tion, and some efficient algorithms have been proposed. For
example, [7] proposed an algorithm concerning differential
privacy and resilient consensus for MASs by adding expo-
nentially decaying privacy noises. [8], [9] proposed differen-
tially private consensus algorithms for continuous-time and
discrete-time MASs by adding non-decaying privacy noises
with time-invariant variances, respectively. Furthermore, [10]
developed a differentially private bipartite consensus algorithm
by adding non-decaying privacy noises with time-varying
variances. However, all the works [7]–[10] require infinite-
bit communication data, which is impractical in real network.
Consequently, it is necessary to consider the case with finite-
bit bandwidth and quantized communication data.

Many quantized communication techniques can be em-
ployed for conserving communication resources, such as
infinite-level quantization [11], [12] and finite-level quantiza-
tion [13]–[15]. Recently, differentially private consensus under
quantized communications has been one of active areas, and
some important works have been published [16], [17]. In [16],
[17], the differentially private consensus problems of first-
order and second-order homogeneous MASs with quantized
communications were addressed, respectively. In these two
works, the transmitted data is generated by the multi-level
uniform quantizer. And the privacy noises are required to be
exponentially decaying, which may cause privacy leakage as
time goes on. Thus, it is necessary to investigate differentially
private consensus with non-decaying privacy noises under
quantized communications. Except for quantized communica-
tions, low-frequency updating control strategies can be adopted
to conserve communication resources. These strategies in-
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clude, but are not limited to, event-triggered control [18],
[19] and impulsive control [20], [21], etc. Additionally, low-
frequency communication schemes are also good alternative
options, such as event-triggered communication [22], [23] and
impulsive communication [24], [25], etc.

Based on the above discussions, this paper investigates
the differentially private consensus problem of heterogeneous
MASs under binary-valued communications. The main contri-
butions are summarized as follows.

• A communication scheme is established on binary-valued
information, which is only 1-bit. Thus, the communica-
tion resources can be saved by the scheme of this paper in
comparison to that in [8]. The communication process in
[8] does not consider the effect of bandwidth restriction
and requires infinite-bit transmitted information, which
can cause substantial power consumption. It is true that
binary-valued information is rather imprecise, but each
agent can design the recursive projection algorithm to
estimate its neighbours’ auxiliary variables.

• The privacy noise employed in this paper can be non-
decaying. Consequently, in the sense of privacy protec-
tion, the privacy mechanism in this paper is superior to
those in [16], [17]. The privacy noises in [16], [17] are
required to be exponentially decaying, which is conser-
vative and may result in privacy leakage as time goes on.
Indeed, the non-decaying noise can lead to bad consensus
and estimation effects. To deal with this issue, this paper
utilizes the stochastic approximation approach, in which
the decaying stepsize can mitigate the adverse influence
of this kind of noise.

• An impulsive control protocol is designed to address
the differentially private consensus problem, by which
the control signals are generated and affect the original
system only at some impulsive instants. As a result,
the communication resources can be conserved by the
control protocol of this paper compared with that in
[8]. The state-feedback control strategy adopted in [8]
requires that the control signals constantly feed back to
the original system, which may result in resource waste.
Despite that the constructed impulsive controllers work
only at some impulsive instants, both the consensus error
and the estimation error can be guaranteed to asymptot-
ically converge to zero. In addition, [8] only obtains the
convergence result of consensus error. Besides, this paper
also derives an explicit convergence rate.

The remainder of this paper is organized as follows. Section
2 formulates the considered problem. Section 3 investigates the
convergence and the convergence rates of the consensus error
and the estimation error. Section 4 obtains the privacy index
of the randomized mechanism. Section 5 presents a simulation
example to demonstrate the effectiveness of the theoretical
results. Finally, Section 6 summarizes the main results.
Notations. R represents the set of real numbers. N+ represents
the set of positive integer numbers. Rn×m represents the
set of real-valued matrices. E represents the mathematical
expectation operator. P represents the probability operator.
∥ · ∥1 represents the 1-norm. ∥ · ∥ represents the Euclidean

norm or 2-norm. AT represents the transpose of matrix A.

II. PROBLEM FORMULATION

Consider the following heterogeneous MAS:{
ẋi(t) = Aixi(t) +Biui(t),
yi(t) = Cixi(t),

(1)

where i = 1, 2, . . . , N , xi(t) ∈ Rni , yi(t) ∈ Rp are the system
state and output of the i-th agent, respectively, Ai ∈ Rni×ni ,
Bi ∈ Rni×mi , Ci ∈ Rp×ni are known matrices, ui(t) ∈ Rmi

is the control input.
The interaction topology among the agents is described

by a directed graph G. (i, j) ∈ G means that there is an
edge between agent i and agent j, and agent i can receive
information from agent j. The adjacency matrix is defined
by H = [hij ]n×n, where hii = 0, hij ∈ N+ if (j, i) ∈ G,
and hij = 0 otherwise. The set of neighbors of agent i is
denoted as Ni. The in-degree Λin

i and out-degree Λout
i of agent

i is denoted as Λin
i

.
=

∑
j∈Ni

hij and Λout
i

.
=

∑
j∈Ni

hji,
respectively. G is balanced if and only if Λin

i = Λout
i . In

this case, let Λi = Λin
i = Λout

i for simplicity. The Laplacian
matrix is defined as L = D −H, where D = diag{Λin

i , i =
1, . . . , N}. In this paper, G is assumed to be balanced and
strongly connected.

The work [8] investigates the differentially private output
consensus problem of the system (1). To protect the pri-
vate dataset P = {yi(0), i = 1, . . . , N} from the external
eavesdroppers, [8] introduces the following auxiliary variables
ξi ∈ Rp, i = 1, 2, . . . , N : ξ̇i(t) = 0, t ̸= τk,

ξi(τk) = ξi(τk−1)
+βk−1

∑
j∈Ni

hij

(
ϕj(τk−1)− ξi(τk−1)

)
,
(2)

where the time sequence of information transmission {τk}
satisfies 0 = τ0 < τ1 < · · · < τk < τk+1 < · · · ,
and lim

k→∞
τk = ∞, dk = τk − τk−1 ∈ [dmin, dmax] with

0 < dmin ≤ dmax, ξi(0) = yi(0), ϕj(·) = ξj(·) + ωj(·)
is the transmitted information from agent j to agent i, each
entry of the private noise ωj(·) ∈ Rp satisfies i.i.d and
obeys the Laplacian distribution, i.e. ωj,l(·) ∼ Lap(0, b), the
distribution function and the associated density function are,
respectively, F (·) and f(x) = dF (x)

dx ̸= 0, βk > 0 satisfies∑∞
k=0 βk = ∞ and

∑∞
k=0 β

2
k < ∞. Many examples of βk

can satisfy these two conditions, for example, ν1

(k+1)ν2 with
ν1 > 0 and ν2 ∈ (0.5, 1]. For the convenience of analysis, we
take βk = ν1

k+1 and ν1 ∈ N+.
From (2), it can be observed that each auxiliary variable ξi

only depends on the initial output yi(0) of the original system
(1), and the noisy information ϕj(τk) from the neighbours.
Thus, the leaking risk of private data can be reduced by
transmitting ξj(τk) + ωj(τk) instead of yj(τk) + ωj(τk).

It should be noted that the transmitted information ϕj(·)
in [8] is infinite-bit. However, in communication field, the
network bandwidth is always limited. Therefore, it is necessary
to reconsider the differentially private consensus problem for
the case of binary-valued communications. In this paper, the
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transmitted information ϕj(τk) is processed by the following
binary-valued quantizer:

sij(τk) = I{ϕj(τk)≤ϑij}, (3)

where sij(τk) = (sij,1(τk), . . . , sij,p(τk))
T ∈ Rp is the

binary-valued information from agent j to agent i, which is
decided by the indicator function I{·}. That is, sij,l(τk) = 1
if ϕj,l(τk) ≤ ϑij,l, and sij,l(τk) = 0 otherwise. Constant
vectors ϑij ∈ Rp are given thresholds, j ∈ Ni. In this context,
the observation dataset from the private dataset P becomes
O = {sij(τk), i = 1, . . . , N, j ∈ Ni, k = 0, 1, . . .}.

Remark 2.1: In real-world applications, thresholds ϑij are
widely used. For example, the air-fuel ratio (AFR) is a
critical parameter determining the performance, efficiency, and
emissions of internal combustion engines. If the AFR exceeds
the threshold (approximately 14.7:1), the mixture is classified
as lean. Otherwise, the mixture is classified as rich [26]. Other
examples can be found in the ATM ABR traffic control [27],
and identification of binary perceptrons [28], etc.

Based on the binary-valued information sij(τk), the estima-
tion ξ̂ij(τk) (j ∈ Ni) of ξj(τk) is formulated by the following
recursive projection operator:

ξ̂ij(τk) = ΠΩ

{
ξ̂ij(τk−1) +

ν1

k

[
F
(
ϑij − ξ̂ij(τk−1)

)
−sij(τk)

]}
,

(4)
where ΠΩ(z) is the recursive projection operator defined as
follows:

ΠΩ(z)
.
= argmin

a∈Ω
∥z − a∥, ∀z ∈ Rp,

where Ω
.
= {a ∈ Rp : ∥a∥ ≤ M}.

By virtue of (4), the second equation of (2) can be recon-
structed as follows:

ξi(τk) = ξi(τk−1) +
ν1
k

∑
j∈Ni

hij

(
ξ̂ij(τk−1)− ξi(τk−1)

)
. (5)

To achieve the output consensus target, the work [8] adopts
the continuous control strategy, which means that the control
signal is constantly generated, and feeds back into the orig-
inal system continuously. In this context, the communication
resources may be wasted. An interesting question is whether
the consensus target can also be achieved via the impulsive
control protocol, by which the control signals are generated
and affect the original system only at some impulsive instants.

To answer the above question, we design the following
impulsive controller:

ui(t) =

∞∑
k=0

[
K1,ixi(t

−) +K2,iξi(t
−)

]
δ(t− τk), (6)

where k ∈ N, K1,i and K2,i are the impulsive control gains,
xi(t

−) and ξi(t
−) denote the left limits of xi and ξi at t,

respectively, δ(·) is the Dirac delta function, and τk is from
(2).

Then, by (6) we have{
ui(t) = 0, t ̸= τk,

ui(τk) = K1,ixi(τ
−
k ) +K2,iξi(τ

−
k ).

(7)

Moreover, by (7), (1) can be transformed into
ẋi(t) = Aixi(t), t ̸= τk,

xi(τ
+
k ) = xi(τ

−
k ) +Biui(τk)

= (I +BiK1,i)xi(τ
−
k ) +BiK2,iξi(τ

−
k ),

(8)
where xi(τ

+
k ) and xi(τ

−
k ) denote the right and left limits of

xi at τk, respectively. In this paper, it is assumed that for all
k ∈ N, xi(τ

+
k ) = xi(τk) and ξi(τ

+
k ) = ξi(τk).

By (8) we have

xi(τk) = (I +BiK1,i)e
Aidkxi(τk−1) +BiK2,iξi(τk−1), (9)

The following assumptions are important for the main
results.

Assumption 2.2: (see [8]) For any i = 1, . . . , N , there
exists a solution (Θi, Ui) of the following equation:{

AiΘi +BiUi = 0,
CiΘi = I.

Assumption 2.3: (i) System (8) is impulsively controllable
[29]. (ii) There exists a solution (K1,i,K2,i) such that

(
(I +

BiK1,i)e
Aidk − I

)
Θi +BiK2,i = 0 for any i = 1, . . . , N .

Remark 2.4: The condition (ii) in Assumption 2.3 is nec-
essary for the main results in Section III. If this condition
is not satisfied, the consensus error will not asymptotically
converge to zero in the mean square sense. If Bi is of full
row rank for any i = 1, . . . , N , then we can design K2,i =
BT

i (BiB
T
i )

−1
(
I − (I + BiK1,i)e

Aidk
)
Θi to ensure that (ii)

of Assumption 2.3 holds. When Bi is not of full row rank,
the matrix K2,i may not be explicitly constructed. But we can
still get K2,i by solving the condition (ii) in Assumption 2.3.
For more details, please refer to Section V.

This paper aims to achieve the output consensus of the
system (1) while protecting the private dataset P .

Definition 2.5: System (1) is said to achieve the mean
square output consensus under the controller (6), if for any
i, it holds limk→∞ E

[
∥yi(τk)− 1

N

∑N
i=1 ξi(τk)∥2

]
= 0.

Remark 2.6: By noting ξi(0) = yi(0) and from (5), we can
get that ξi(τk) depends on yi(0). Therefore, it is important
to protect the private dataset P since the consensus target is
related to P .

For any k ∈ N, by (1) and Assumption 2.2, we have

yi(τk)− 1
N

∑N
i=1 ξi(τk)

= Cixi(τk)− 1
N

∑N
i=1 ξi(τk)

= Cixi(τk)− ξi(τk) + ξi(τk)− 1
N

∑N
i=1 ξi(τk)

= Ci(xi(τk)−Θiξi(τk)) + ξi(τk)− 1
N

∑N
i=1 ξi(τk).

(10)
Let xci(τk)

.
= xi(τk) − Θiξi(τk) and ξ̃i(τk)

.
= ξi(τk) −

1
N

∑N
i=1 ξi(τk). Then, if limk→∞ E

[
∥xci(τk)∥2

]
= 0 and

limk→∞ E
[
∥ξ̃i(τk)∥2

]
= 0, then it holds limk→∞ E

[
∥yi(τk)

− 1
N

∑N
i=1 ξi(τk)∥2

]
= 0. In the forthcoming sections, we

mainly analyze xci(τk) and ξ̃i(τk).
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III. CONVERGENCE AND CONVERGENCE RATE

This section investigates the convergence and convergence
rates of xci(τk) and ξ̃i(τk). To this end, some useful transfor-
mations of xci(τk) and ξ̃i(τk) are needed as follows.

According to (5), (9) and the definition of xci(τk) below
(10), we can obtain

xci(τk)

= xi(τk)−Θiξi(τk)

= (I +BiK1,i)e
Aidkxi(τk−1) + (BiK2,i −Θi)ξi(τk−1)

− ν1Θi

k

∑
j∈Ni

hij

(
ξ̂ij(τk−1)− ξi(τk−1)

)
= (I +BiK1,i)e

Aidkxci(τk−1)

+
[
(I +BiK1,i)e

AidkΘi +BiK2,i −Θi

]
ξi(τk−1)

− ν1Θi

k

∑
j∈Ni

hij

(
ξ̂ij(τk−1)− ξi(τk−1)

)
.

(11)
From Assumption 2.3 (ii), we can transform (11) into

xci(τk) = (I +BiK1,i)e
Aidkxci(τk−1)

−ν1Θi

k

∑
j∈Ni

hij

(
ξ̂ij(τk−1)− ξi(τk−1)

)
.
(12)

Let xc = (xc1, . . . , xcN )T , ξ̃ = (ξ̃1, . . . , ξ̃N )T , A =
diag{A1, . . . , AN}, B = diag{B1, . . . , BN}, K1 =
diag{K1,1, . . . ,K1,N}, Θ = diag{Θ1, . . . ,ΘN}, ε =
(ε1r1 , . . . , ε1rΛ1

, ε2rΛ1+1 , . . . , ε2rΛ1+Λ2
, . . . ,

εNrΛ1+...+ΛN−1+1 , . . . , εNrΛ1+...+ΛN
)T , εij = ξ̂ij − ξj . Then,

by (12) and the definition of ξ̃i(τk) below (10), we have

xc(τk+1) = (I +BK1)e
Adk+1xc(τk)

+ ν1Θ
k+1

[
(L⊗ Ip)ξ̃(τk)− (H̃ ⊗ Ip)ε(τk)

]
,

ξ̃(τk+1) =
[
(IN − ν1

k+1L)⊗ Ip
]
ξ̃(τk)

+ ν1

k+1 (JH̃ ⊗ Ip)ε(τk),
(13)

where L is the Laplacian matrix, H̃ = (h̃1r1 , . . . , h̃1rΛ1
,

. . . , h̃NrΛ1+...+ΛN−1+1 , . . . , h̃NrΛ1+...+ΛN
) with h̃ij =

(0, . . . , hij︸︷︷︸
i th position

, . . . , 0)T , hij is the element of

the adjacency matrix H, and J = IN − 1
N 11T with

1 = (1, . . . , 1)T .
Before proceeding with the convergence and convergence

rates of xci(τk) and ξ̃i(τk), we need the following bounded-
ness result for ξi(τk).

Lemma 3.1: For any k ≥ ν1Λi and any i = 1, . . . , N , the
inequality ∥ξi(τk)∥ ≤ M holds.
Proof. From (5), we have

ξi(τk) = (1− ν1Λi

k
)ξi(τk−1) +

ν1
k

∑
j∈Ni

hij ξ̂ij(τk−1). (14)

By (4), we can get that ∥ξ̂ij(τk)∥ ≤ M for any k. Thus, when
k = ν1Λi, (14) yields ∥ξi(τk)∥ ≤ M .
Let ∥ξi(τk∗)∥ ≤ M hold for some k∗ > ν1Λi. Then, by (14),

we can get that

∥ξi(τk∗+1)∥ ≤ |1− ν1Λi

k∗+1 |∥ξi(τk∗)∥+ ν1

k∗+1ΛiM

≤ (1− ν1Λi

k∗+1 )M + ν1

k∗+1ΛiM

= M.

By the mathematical induction method, the inequality
∥ξi(τk)∥ ≤ M holds for any k ≥ ν1Λi and any i = 1, . . . , N .
The proof is completed.

Remark 3.2: For the convenience of analysis, it is required
that hij ∈ N+ for (j, i) ∈ G, and ν1 ∈ N+. For the case that
hij > 0 and ν1 > 0, Lemma 3.1 can also be proved by taking
proper ν1 such that ν1Λi ∈ N+ for any i.

Construct three Lyapunov functions as V1(k) =
E
[
ξ̃T (τk)ξ̃(τk)

]
, V2(k) = E

[
xT
c (τk)xc(τk)

]
, V3(k) =

E
[
εT (τk)ε(τk)

]
. Based on Lemma 3.1, we can obtain the

following three lemmas concerning the relationship among
Vi(k) (i = 1, 2, 3), which are important to derive the
convergence and convergence rates of xci(τk) and ξ̃i(τk).

Lemma 3.3: For any k ≥ ν1Λmax, where Λmax =
max{Λi, i = 1, . . . , N}, the following inequality holds:

V1(k + 1)

≤
[
1− 2ν1

k+1λ2(L̄) +
ν2
1∥L∥2

(k+1)2 + ν1γ1

k+1 ∥Ψ2∥2
]
V1(k)

+ ν1

γ1(k+1)V3(k) +
1

(k+1)2∆1,
(15)

where L̄ = LT+L
2 with λ2(L̄) ≤ λ3(L̄) ≤ . . . ≤ λN (L̄),

Ψ2 = (J − ν1

k+1L)H̃ ⊗ Ip, γ1 > 0 is an arbitrary constant and
∆1 > 0 is a constant.
Proof. From (13), and by noting JL = LJ = L, we have

V1(k + 1) = E
{
ξ̃T (τk)

[
(IN − ν1

k+1L)
2 ⊗ Ip

]
ξ̃(τk)

+ 2ν1

k+1 ξ̃
T (τk)

[
(J − ν1

k+1L)H̃ ⊗ Ip
]
ε(τk)

+
ν2
1

(k+1)2 ε
T (τk)(H̃

TJTJH̃ ⊗ Ip)ε(τk)
}
.

(16)
By Lemma 3.1, and by noting εij = ξ̂ij − ξj , we know that
ε(τk) is bounded for any k ≥ ν1Λmax. Then, (16) yields

V1(k + 1)

≤ E
{
ξ̃T (τk)

[
(IN − ν1

k+1L)
2 ⊗ Ip

]
ξ̃(τk)

+ 2ν1

k+1 ξ̃
T (τk)

[
(J − ν1

k+1L)H̃ ⊗ Ip
]
ε(τk) +

∆1

(k+1)2

}
≤

[
1− 2ν1

k+1λ2(L̄) +
ν2
1∥L∥2

(k+1)2 + ν1γ1

k+1 ∥Ψ2∥2
]
V1(k)

+ ν1

γ1(k+1)V3(k) +
1

(k+1)2∆1.

The proof is completed.
Lemma 3.4: For any k ≥ ν1Λmax, the following inequality

holds:

V2(k + 1) ≤ ν1

γ2(k+1)∥Θ(L⊗ Ip)∥2V1(k)

+
(
1 + ν1(γ2+γ3)

k+1

)
∥Φ∥2V2(k)

+ ν1

γ3(k+1)∥Θ(H⊗ Ip)∥2V3(k) +
1

(k+1)2∆2,
(17)
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where Φ = (I+BK1)e
Adk+1 , γ2 > 0 and γ3 > 0 are arbitrary

constants, and ∆2 > 0 is a constant.
Proof. Similar to the proof of Lemma 3.3, we can get

V2(k + 1) ≤ E
{
xT
c (τk)Φ

TΦxc(τk)

+ 2ν1

k+1x
T
c (τk)Φ

TΘ(L⊗ Ip)ξ̃(τk)

− 2ν1

k+1x
T
c (τk)Φ

TΘ(H⊗ Ip)ε(τk) +
∆2

(k+1)2

}
≤ ν1

γ2(k+1)∥Θ(L⊗ Ip)∥2V1(k)

+
(
1 + ν1(γ2+γ3)

k+1

)
∥Φ∥2V2(k)

+ ν1

γ3(k+1)∥Θ(H⊗ Ip)∥2V3(k) +
∆2

(k+1)2 .

The proof is completed.
Lemma 3.5: For any k ≥ ν1Λmax, the following inequality

holds:

V3(k + 1)

≤ ν1∥Ψ4∥2

γ4(k+1) V1(k) +
[
(1 + ν1γ4

k+1 )(1−
ν1λmin(Ψ

T
3 +Ψ3)

k+1

+
ν2
1∥Ψ3∥2

(k+1)2 )− 2ν1fm
k+1

]
V3(k) +

∆3

(k+1)2 ,
(18)

where Ψ3 = (Q⊗Ip)(H̃⊗Ip), Ψ4 = (Q⊗Ip)(L⊗Ip), fm =
min

l=1,...,p
{fl(ϑmax+M)} with ϑmax = max

i=1,...,N,j∈Ni

{ϑij}, γ4 >

0 is an arbitrary constant, and ∆3 > 0 is a constant.
Proof. By Lemma 3.1, ∥ξj(τk)∥ ≤ M holds for any j and
any k ≥ ν1Λmax. Thus, xj(τk) = ΠM (xj(τk)) holds for any
j and any k ≥ ν1Λmax. From (4) to (5), we have

∥εij(τk+1)∥

= ∥ξ̂ij(τk+1)− ξj(τk+1)∥

=
∥∥∥ΠΩ

{
ξ̂ij(τk) +

ν1

k+1

(
F
(
ϑij − ξ̂ij(τk)

)
−sij(τk+1)

)}
−ΠΩ

(
ξj(τk+1)

)∥∥∥
≤

∥∥∥εij(τk) + ν1

k+1

(
F
(
ϑij − ξ̂ij(τk)

)
− sij(τk+1)

)
− ν1

k+1

∑
l∈Nj

hjl(ξ̂jl(τk)− ξj(τk))
∥∥∥, k ≥ ν1Λmax,

which yields

V3(k + 1)

≤ E
{
εT (τk)

∥∥I − ν1

k+1 (Q⊗ Ip)(H̃ ⊗ Ip)
∥∥2ε(τk)

+
ν2
1

(k+1)2 ξ̃
T (τk)

∥∥(Q⊗ Ip)(L⊗ Ip)
∥∥2ξ̃(τk)

+
ν2
1

(k+1)2

∥∥F (
ϑ− ξ̂(τk)

)
− s(τk+1)

∥∥2
+ 2ν1

k+1ε
T (τk)

[
I − ν1

k+1 (Q⊗ Ip)(H̃ ⊗ Ip)
]T

×(Q⊗ Ip)(L⊗ Ip)ξ̃(τk)

+ 2ν1

k+1ε
T (τk)

[
I − ν1

k+1 (Q⊗ Ip)(H̃ ⊗ Ip)
]T

×
[
F
(
ϑ− ξ̂(τk)

)
− s(τk+1)

]
(19)

+
2ν2

1

(k+1)2 ξ̃
T (τk)(L

T ⊗ Ip)(Q
T ⊗ Ip)

×
[
F
(
ϑ− ξ̂(τk)

)
− s(τk+1)

]}
, k ≥ ν1Λmax,

where Q =
(
q1r1 , . . . , q1rΛ1

, . . . , qNrΛ1+...+ΛN−1+1 , . . . ,

qNrΛ1+...+ΛN

)T with qij = (0, . . . , 1︸︷︷︸
j th position

, . . . , 0)T , and

ϑ =
(
ϑ1r1 , . . . , ϑ1rΛ1

, . . . , ϑNrΛ1+...+ΛN−1+1 , . . . ,

ϑNrΛ1+...+ΛN

)T
.

Next, we mainly analyze the term 2ν1

k+1ε
T (τk)

[
I − ν1

k+1 (Q ⊗
Ip)(H̃ ⊗ Ip)

]T [
F
(
ϑ− ξ̂(τk)

)
− s(τk+1)

]
. The other terms in

(19) can be either related to Vi(k) (i = 1, 2, 3) or rewritten as
∆4

(k+1)2 with ∆4 > 0 being a constant.
Define a σ-algebra as Dk = σ{yi(0), ωi(τl), i = 1, . . . , N, l =
1, . . . , k}. Then both ξ̂ij(τk) and ξj(τk) are Dk measurable,
which yield ε(τk) is also Dk measurable.
Similar to the proofs of Lemma 3.5 in [19] and Lemma 2 in
[30], we have

E
{

2ν1

k+1ε
T (τk)

[
I − ν1

k+1 (Q⊗ Ip)(H̃ ⊗ Ip)
]T

×
[
F
(
ϑ− ξ̂(τk)

)
− s(τk+1)

]}
≤ − 2ν1

k+1fmV3(k) +
∆5

(k+1)2 ,

(20)

where ∆5 > 0 is a constant.
Thus, by (19) and (20), we can obtain

V3(k + 1)

≤ ν1∥Ψ4∥2

γ4(k+1) V1(k) +
[
(1 + ν1γ4

k+1 )(1−
ν1λmin(Ψ

T
3 +Ψ3)

k+1

+
ν2
1∥Ψ3∥2

(k+1)2 )− 2ν1fm
k+1

]
V3(k) +

∆3

(k+1)2 ,

The proof is completed.
Now, based on Lemmas 3.3-3.5, we are in a position to

propose the following theorem concerning the convergence
and convergence rates of xci(τk) and ξ̃i(τk).

Theorem 3.6: Let V (k) =
∑3

i=1 Vi(k). Then, the following
result holds as k → ∞:

V (k) =


O
(

1
kν1Ψ5

)
, if 0 < ν1Ψ5 < 1,

O
(
ln k
k

)
, if ν1Ψ5 = 1,

O
(
1
k

)
, if ν1Ψ5 > 1,

where Ψ5 = 2λ2(L̄) − ∥Θ(L⊗Ip)∥2

γ2
− ∥Ψ4∥2

γ4
− γ1∥Ψ2∥2, γ1,

Ψ2 and L̄ are from Lemma 3.3, γ2 is from Lemma 3.4, γ4
and Ψ4 are from Lemma 3.5, Θ is below (12).
Proof. From Lemmas 3.3-3.5, we have

V (k + 1)

≤
[
1− 2ν1

k+1λ2(L̄) +
ν2
1∥L∥2

(k+1)2 + ν1γ1

k+1 ∥Ψ2∥2
(21)
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+ ν1

γ2(k+1)∥Θ(L⊗ Ip)∥2 + ν1

γ4(k+1)∥Ψ4∥2
]
V1(k)

+
(
1 + ν1(γ2+γ3)

k+1

)
∥Φ∥2V2(k)

+
[
(1 + ν1γ4

k+1 )(1−
ν1λmin(Ψ

T
3 +Ψ3)

k+1 +
ν2
1

(k+1)2 ∥Ψ3∥2)

−2ν1fm
k+1 + ν1

γ1(k+1) +
ν1

γ3(k+1)∥Θ(H⊗ Ip)∥2
]
V3(k)

+ ∆4

(k+1)2

.
= α1(k)V1(k) + α2(k)V2(k) + α3(k)V3(k) +

∆4

(k+1)2 ,

where ∆4 > 0 is a constant.
From Assumption 2.3, and by noting dk ∈ [dmin, dmax], we
can select appropriate parameters γi (i = 1, 2, 3, 4) and K1

such that max{α2(k), α3(k)} ≤ α1(k). Thus, (21) yields

V (k+ 1) ≤
[
1− ν1Ψ5

k + 1
+

ν21∥L∥2

(k + 1)2

]
V (k) +

∆4

(k + 1)2
. (22)

Since ξ̂ij(τk) and ξj(τk) are bounded, Vi(k) (i = 1, 2, 3) and
V (k) are also bounded. Therefore, (22) yields

V (k + 1) ≤
(
1− ν1Ψ5

k + 1

)
V (k) +

∆6

(k + 1)2
, (23)

where ∆6 > 0 is a constant.
By Lemma 3.8 in [19] and Lemma 4 in [14], we have

V (k) =


O
(

1
kν1Ψ5

)
, 0 < ν1Ψ5 < 1,

O
(
ln k
k

)
, ν1Ψ5 = 1,

O
(
1
k

)
, ν1Ψ5 > 1.

The proof is completed.
Remark 3.7: By Theorem 3.6, we can get that

limk→∞ E
[
∥xci(τk)∥2

]
= 0 and limk→∞ E

[
∥ξ̃i(τk)∥2

]
= 0,

thereby yielding limk→∞ E
[
∥yi(τk)− 1

N

∑N
i=1 ξi(τk)∥2

]
= 0.

If the impulsive controller (6) becomes the state-feedback
form ui(t) = K1,ixi(t) + K2,iξi(t) as shown in [8], then it
holds limt→∞ E

[
∥yi(t)− 1

N

∑N
i=1 ξi(t)∥2

]
= 0.

Remark 3.8: The main novelty of this paper lies in three
aspects: privacy noise design, communication scheme, and
control strategy. (i) The privacy noise ω in (2) is non-
decaying, providing stronger privacy protection compared to
the exponentially decaying noises used in [16], [17]. (ii) The
1-bit communication scheme (3) significantly reduces resource
consumption and bandwidth requirements compared to the
infinite-bit transmission scheme in [8]. (iii) The generation,
processing and transmission of control signals always consume
power. In the designed impulsive control protocol (6), control
signals are generated and affect the original system only at
some impulsive instants. Thus, the control protocol (6) can
save communication resources compared to the continuous
state-feedback strategy in [8].

IV. PRIVACY ANALYSIS

In this section, we investigate the differential privacy index
of the proposed algorithm. In Section 2, we define a private
dataset as P = {yi(0), i = 1, . . . , N}. Before giving the

definition of differential privacy, we define another private
dataset as P ′ = {y′i(0), i = 1, . . . , N}.

Definition 4.1: ([6], [8]) Given a time horizon T > 0 and
a parameter ε > 0. For any subset O1 ⊆ Rn and any two
datasets D and D′, a randomized mechanism M : D(D′) →
O1 is said to be ε-differentially private up to time T − 1, if it
holds that P

[
M(D) ∈ O1

]
≤ eε∥D−D′∥1P

[
M(D′) ∈ O1

]
.

To obtain the differential privacy index, we need the sensi-
tivity of a randomized mechanism as follows.

Definition 4.2: ([8]) The sensitivity of a randomized mech-
anism is

S(τk) = sup
P,P′,O

∥ρ(P,O)(τk−1)− ρ(P ′,O)(τk−1)∥1
∥P − P ′∥1

, (24)

where ρ(P,O)(τk) = {ξP,O
i (τk), i = 1, 2, . . . , N} and

ρ(P ′,O)(τk) = {ξP
′,O

i (τk), i = 1, 2, . . . , N}, ξP,O
i (τk) is

from (5) and is related to the private dataset P and the
observation dataset O, which is given below (3). Correspond-
ingly, ξP

′,O
i (τk) is related to the private dataset P ′ and the

observation dataset O.
Theorem 4.3: The sensitivity S(τk) satisfies

S(τk) =


1, k = 1,
k−2∏
l=0

(ν1Λmax

l+1 − 1), 2 ≤ k ≤ ν1Λmax,

0, k > ν1Λmax,

(25)

where ν1 is from (2), Λmax = max{Λi, i = 1, . . . , N}.
Proof. For the private datasets P and P ′, the generated
observation datasets O are the same, i.e. O = {sij(τk), i =
1, . . . , N, j ∈ Ni, k = 0, 1, . . .}. Thus, the estimations
ξ̂ij(τk) (i = 1, 2, . . . , N, j ∈ Ni) can be constructed as (4)
for both P and P ′. Then, by (5) we have

ξP,O
i (τk−1)− ξP

′,O
i (τk−1)

= (1− ν1Λi

k−1 )
(
ξP,O
i (τk−2)− ξP

′,O
i (τk−2)

)
.

(26)

For each i and any k > ν1Λi, by (26) we have ξP,O
i (τk−1)−

ξP
′,O

i (τk−1) ≡ 0. Thus, for k > ν1Λmax, it holds S(τk) = 0.
The rest of proof is similar to that of Theorem 3.4 in [8], so
it is omitted here. The proof is completed.

The following theorem shows the differential privacy index
ε based on Theorem 4.3.

Theorem 4.4: The differential privacy index ε over time
horizon T satisfies ε =

∑T
k=1 S(τk)

b , where b is from (2).
Proof. The proof is similar to that of Theorem 3.5 in [8], so
it is omitted here.

Remark 4.5: In [8], S(τk) is defined as follows

S(τk) =


1, k = 1,
k−2∏
l=0

(1− βlΛmin), k ≥ 2,
(27)

where Λmin = min{Λi, i = 1, . . . , N}, and βk satisfies (i)∑∞
k=0 βk = ∞, (ii)

∑∞
k=0 β

2
k < ∞, (iii) βk < 1

Λmax
. Based

on (27), the differential privacy index ε is also derived as
ε =

∑T
k=1 S(τk)

b . In Theorem 4.3, we only require βk satisfies
(i) and (ii). If βk also satisfies (iii), then (25) will become
(27). In some contexts, ε in this paper is smaller than that in
[8]. For example, let Λi ≡ 1 for any i and T be sufficiently
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large. In (25), let ν1 = 10. Then, S(τk) =
∏k−2

l=0 (
10
l+1 − 1)

for 2 ≤ k ≤ 10 and S(τk) ≡ 0 for k > 10, which yield
ε = 1

b

[
1+

∑10
k=2

∏k−2
l=0 (

10
l+1−1)

]
< ∞. In (27), let βk = 1

k+2 .
Then, S(τk) = 1

k and ε = 1
b

∑T
k=1

1
k . When T → ∞, it

holds that
∑T

k=1
1
k → ∞ and ε → ∞. Based on the above

analysis, ε in this paper is smaller than that in [8] for some
cases, which means the privacy performance can be enhanced.
Moreover, it can be concluded from the expression of the index
ε in Theorem 4.4 that the larger the parameter b of privacy
noise is, the smaller the index ε is, thereby enhancing privacy
protection. However, this improvement in privacy comes at the
cost of reduced accuracy, as larger value of b inevitably yields
larger value of variance and degrades accuracy.

Remark 4.6: This paper proposes an algorithm that blends
estimation, control, and privacy to address the differentially
private output consensus problem of the system (1). The main
steps of this algorithm can be summarized as follows.
Estimation: Each agent designs the recursive projection oper-
ator (4) to estimate its neighbours’ auxiliary variables.
Control: Based on its own system state and auxiliary variable,
each agent constructs the impulsive controller (6) to achieve
the mean-square output consensus with a convergence rate.
Privacy: By the sensitivity (25), each agent obtains the dif-
ferential privacy index of the proposed algorithm as shown in
Theorem 4.4.

V. SIMULATION

Consider the system (1) with parameters Ai =

(
0 1
ai ei

)
,

Bi =

(
0 0
bi 0

)
, Ci = (1 0), Θi = (1 0)T , Ui = (−ai

bi
0)T ,

ai = −0.3 + 0.4i, bi = −0.2 + 0.4i, ei = −1.6 + 0.6i,

i ∈ N1, and Ai =

 0 1 0
0 0 1
ai ei fi

, Bi =

 0 0 0
bi 0 0
0 bi 0

,

Ci = (1 0 0), Θi = (1 0 0)T , Ui = (0 − ai

bi
0)T , ai =

1.3− 0.3(i− 5), bi = 2.2− 0.2(i− 5), ei = 3.4− 0.4(i− 5),
fi = −0.1 − 0.3(i − 5), i ∈ N2, where N1 = {1, 2, 3, 4, 5}
and N2 = {6, 7, 8, 9, 10}. The network topology is shown in
Fig.1. For (j, i) ∈ G, hij = 1.

In this case, the initial value of the system output is
y(0) = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]T . Moreover,
some system parameters are chosen as x̂ij(0) =
[9, 19, 19, 29, 39, 39, 49, 49, 59, 59, 69, 69, 79, 89, 89, 99]T ,
i = 1, . . . , 10, j ∈ Ni, M = 100, ϑij = 0, ν1 = 41. The
random noises obey the Laplacian distribution with each
element satisfying ωj,l(·) ∼ Lap(0, 1).

To achieve the control target, the impulsive controller (6) for
each agent is respectively designed with the control gain matri-

ces K1,1 =

(
−10 −0.8
−0.9 −0.1

)
, K1,2 =

(
−2 0.1
0.1 0.1

)
, K1,3 =(

−2 0.12
0.1 −0.1

)
, K1,4 =

(
−1.2 0.1
0 −0.12

)
, K1,5 =(

−1 0.1
0 −0.9

)
, K1,6 =

 −1 −0.1 −0.01
−0.1 0 0
0 −0.1 −0.9

,

K1,7 =

 −1 −0.1 −0.1
−0.1 0 0
0 −0.1 −0.9

, K1,8 = −1.5 −0.1 −0.1
−0.1 0 0
0 −0.1 −0.8

, K1,9 =

−1.8 −0.1 −0.1
−0.1 0 0
0 −0.3 −0.9

,

K1,10 =

−1.9 −0.11 −0.11
−0.1 0 0
0 −0.1 −0.7

, K2,1 = (5.7578 0)T ,

K2,2 = (0.1428 0)T , K2,3 = (0.7745 0)T ,
K2,4 = (0.2727 0)T , K2,5 = (0.2230 0)T , K2,6 =
(0.6111 − 0.4526 0)T , K2,7 = (0.6517 − 0.4958 0)T ,
K2,8 = (1.0791 −0.5505 0)T , K2,9 = (1.2867 −0.6215 0)T ,
K2,10 = (1.2845 − 0.7168 0)T . The time sequence of
information transmission {τk} satisfies τk = 0.1k. With the
recursive projection operator (4) and the impulsive controller
(6), the differentially private output consensus of the system
(1) can be achieved. Fig.2 describes the simulation results
of the system outputs. Fig.3 shows the simulation results of
the auxiliary variables ξi(τk). Fig.4 shows the estimation
results. Fig.5 shows the simulation result of V1(k) with the
algorithms in this paper and in [14], which demonstrates that
the convergence speed of V1(k) in this paper is faster than
that in [14].

Fig. 1. Network topology.
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Fig. 2. Trajectories of system outputs yi(τk) and
1
10

∑10
i=1 ξi(τk).

VI. CONCLUSION

In this paper, the differentially private output consen-
sus problem of continuous-time heterogeneous MASs under
binary-valued communications has been addressed. By con-
structing a recursive projection algorithm and designing an
impulsive controller, the mean-square output consensus with a
convergence rate has been achieved. Moreover, the differential
privacy index of the proposed mechanism has been obtained.
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Fig. 3. Trajectories of auxiliary variables ξi(τk).
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Fig. 4. Trajectories of estimations ξ̂ij(τk).
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